Synthese neuer 'Push-Pull'-Enine¹)

von Christian Bacilieri2) und Markus Neuenschwander*

Departement für Chemie und Biochemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

Synthesis of Novel 'Push-Pull'-Enynes

'Push-pull' enynes **14a** – **d** with EtO, PhO, PhS, and MeS groups as π -donors have been synthesized by catalyzed coupling of stannyl ynamines **10** with 3-iodoprop-2-enal (*Scheme 4*).

1. Einleitung. – 'Push-Pull'-Enine sind Enine mit starken Elektronendonator- und Elektronenakzeptor-Gruppen, welche in 1,4-Position der Enin-Einheit stehen und somit eine alternierende Ladungsdichteverteilung induzieren. 'Push-Pull'-Enine können in den beiden isomeren Formen **1** und **2** vorliegen. Um 1990 waren vor allem Enine des Typs **2** bekannt [3][4], welche sich recht einfach durch vinyloge *Michael*-Addition von sekundären Aminen an Diin-one herstellen lassen [3]. In der Literatur fehlten bis dahin Angaben über unsubstituierte 'Push-Pull'-Enine **1**, dagegen waren einige substituierte Vertreter mit CN- [5] bzw. Me₃Si-Gruppen an C(2) [6] beschrieben worden.

Die erste Synthese von unsubstituierten 'Push-Pull'-Eninen **1** wurde 1990 publiziert, allerdings in der Literatur kaum beachtet³). Ostroumov et al. berichteten, dass sich die durch HBr-Elimination aus 2-Bromo-3-(dialkylamino)prop-2-enalen **3** in Lösung hergestellten 'Push-Pull'-Acetylene **4** [7] [8] durch Aldol-Kondensation mit Ketonen in 'Push-Pull'-Enine **1** umwandeln lassen (*Schema 1*, oben) [9]. Das Verfahren ist jedoch experimentell schlecht beschrieben worden, die Anwendungsbreite ist beschränkt⁴), und insbesondere sind bisher keine Aldehyde **1** (R=H) dargestellt worden.

Unabhängig davon untersuchten wir verschiedene Wege zur Synthese von 1 [10], prüften insbesondere die Möglichkeit der Pd-katalysierten Kupplung [11][12] von

^{1) 36.} Mitteilung über Aminoacryl-Derivate. 35. Mitteilung. [1].

²) Teil der Dissertation [2].

³) Wir wurden auf dieses Verfahren erst 1997 aufmerksam.

⁴⁾ Die Methode ist für wasserempfindliche 'Push-Pull'-Acetylene 4 oder 'Push-Pull'-Enine 1 ungeeignet.

metallierten Inaminen des Typs **5** und konnten durch Kupplung der zinkorganischen Verbindungen mit β -Bromo-enonen und β -Bromoacrylsäure-estern drei 'Push-Pull'-Enine **1** (R = Me; MeO) isolieren [13]. Der entscheidende Durchbruch gelang beim Einsatz der stabilen (Trialkylsilyl)- (M = Si) und (Trialkylstannyl)-inamine **5** (M = Sn), welche sich durch Pd-katalysierte Kupplung mit β -Iodo-enonen **6** mit Ausbeuten um 60% zu 'Push-Pull'-Eninen **1** kuppeln lassen [14]. Insbesondere sind auf diesem Wege erstmals auch Aldehyde **1** (R = H) zugänglich geworden.

Unsubstituierte 'Push-Pull'-Enine des Typs 1 interessierten uns als Ausgangsverbindungen zur Synthese von 5-X-5-(Dialkylamino)penta-2,4-dienalen 7: In Analogie zu Inaminen [15] [16] oder zu 'Push-Pull'-Acetylenen [8] [17] sollten sich Carbonsäuren oder Halogenwasserstoff-Säuren leicht an das Inamin-Strukturelement von 1 addieren lassen. Die dabei entstehenden Säure-Addukte 7 müssten sich durch eine beachtliche π -Delokalisierung und einen damit verbundenen Bindungslängenausgleich auszeichnen, was cis/trans-Äquilibirierungen der formalen (C=C)-Bindungen von 7 erleichtern müsste. Dies macht z.B. 5-Chloro-5-(dialkylamino)penta-2,4-dienale 7 zu attraktiven Kandidaten für die von uns postulierte Umlagerung $7 \rightarrow \rightarrow 8$ [13] (*Schema 2*), welche zur bekannten Umlagerung der Säure-Addukte an 'Push-Pull'-Acetylene (Übersicht: [18]) vinylog ist und über Pyryliumsalz-Zwischenstufen 9 führt. Diese Umlagerung konnte kürzlich in einigen Fällen realisiert werden [19][20], bleibt jedoch meist auf der Stufe der 2-Aminopyrylium-Salze 9 stehen, was sowohl kinetische als auch thermodynamische Gründe haben dürfte [20]. Sicher sind 2-Aminopyrylium-Salze 9 hochdelokalisierte π -Systeme niedriger Energie, wobei ein nucleophiler Angriff an C(6) von 9 (welcher zur Auslösung des Schrittes $9 \rightarrow \rightarrow 8$ erforderlich ist) eine beträchtliche freie Aktivierungsenthalpie aufweisen dürfte. Zur Begünstigung der

Pentadienal-Umlagerung⁵) $7 \rightarrow 9 \rightarrow 8$ könnte man deshalb versuchen, die Energie der Pyrylium-Salze 9 anzuheben. Eine aussichtsreiche Möglichkeit besteht darin, die Amino-Gruppe R₂N von 9 durch schlechtere π -Donor-Gruppen (wie RO oder RS) zu ersetzen, welche die Pyrylium-Salze elektronisch weniger stabilisieren. Wir berichten im folgenden über die Synthese neuer 'Push-Pull'-Enine mit Alkoxy-, Phenoxy-, (Alkylthio)- und (Phenylthio)-Gruppen.

2. Synthese neuer 'Push-Pull'-Enine. - 2.1. Allgemeines. Seit einiger Zeit ist bekannt, dass sich die Heck-Reaktion [11][12] zur Kupplung von terminalen Acetylenen mit halogenierten Olefinen und Aromaten eignet. Dabei nimmt die Reaktivität der halogenierten Olefine in der Reihe $I > Br \gg Cl$ ab, und Fluoro-olefine lassen sich nicht kuppeln. Bisher sind verschiedene terminale Acetylene [23], Magnesium- und Zink-acetylide [24] [25], (Trialkylstannyl)-alkine [26] und (Trialkylsilvl)-alkine [27] mit halogenierten Olefinen gekuppelt worden, wobei bekannt ist, daß sich die Reaktivität terminaler Acetylene durch Metallierung erhöhen lässt. Neben Mg-Halogeniden werden häufig Zn-Halogenide eingesetzt, welchen eine besonders hohe Reaktivität zugeschrieben wird, die sich jedoch nur in Lösung generieren lassen. Noch geeigneter sind jedoch (Trialkylsilyl)- und (Trialkylstannyl)-acetylide, welche sich in reiner Form isolieren und beliebig lange bei -30° aufbewahren lassen, und deren Reaktivität durch Wahl verschiedener Alkyl- oder Aryl-Gruppen variiert werden kann. Wir haben gezeigt, dass sich sowohl Silyl- als auch Stannyl-inamine 5 zur Synthese von 'Push-Pull'-Eninen eignen (Schema 1, unten). Dabei erweisen sich Stannyl-inamine generell als reaktiver, sind jedoch oft recht schwierig von Nebenprodukten abzutrennen [14]. Als Kupplungskatalvsatoren werden Ni- oder besser Pd-Katalysatoren mit Phosphinen in der Koordinationssphäre verwendet. Dabei kann der Phosphin-Substituent die Aktivität des Katalysators beeinflussen, welcher typischerweise in einer Menge von 2-5 mol-% in THF eingesetzt wird. Ein plausibler Kupplungsmechanismus ist von Kumada und Mitarbeitern [28] vorgeschlagen worden.

2.2. Synthese der RS- und RO-substituierten (Trimethylstannyl)-acetylene 10. (Trialkylsilyl)- und (Trialkylstannyl)-ethoxyacetylene sind seit längerer Zeit bekannt und leicht zugänglich [29][30]; sie lassen sich nach einem von Ponomarev et al. [31][32] ausgearbeiteten Verfahren synthetisieren, wonach Ethoxyacetylen (11a) mit BuLi deprotoniert ($11a \rightarrow 12a$) und das entstehende Lithio-alkin 12a mit (Trialkylsilyl)- bzw. (Trialkylstannyl)-halogenid umgesetzt wird. Auf diesem Wege lässt sich 1-Ethoxy-2-(trimethylstannyl)acetylen (10a) mit hohen Ausbeuten gewinnen (Schema 3, oben).

Zur Synthese der 1-Phenoxy- (10b), 1-(Phenylthio)- (10c) und 1-(Methylthio)-2-(trimethylstannyl)-acetylene (10d) geht man am besten von den leicht zugänglichen, substituierten 1,2-Dichloroethenen 13b [33], 13c [34] [35] und 13d [36] aus, welche sich mit 2 mol-equiv. BuLi annähernd quantitativ in die heterosubstituierten Lithio-alkine 12b – d überführen lassen. Bei anschliessender Zugabe von (Trimethylstannyl)-chlorid können nach destillativer Aufarbeitung mit hohen Ausbeuten die farblosen Öle von

⁵) Der Name 'Pentadienal-Umlagerung' geht auf *Roedig et al.* zurück, der zeigte, dass sich Perchloropentadienale thermisch unter 1,5-O-Wanderung umlagern [21][22].

10b [33], **10c** [2] und **10d** [2] isoliert werden (*Schema 3*, unten), welche bei -30° beliebig lange haltbar sind.

2.3. Synthese neuer 'Push-Pull'-Enine. Pd-katalysierte Kupplungsreaktionen von (Alkylthio)(trialkylstannyl)-acetyliden sind bisher mit einer Vielzahl von Alkenylhalogeniden durchgeführt worden und stellen eine relativ neue Methode zur einfachen Synthese von Eninen dar [37–39]. Was 'Push-Pull'-Enine angeht, so sind bis heute allerdings nur Verbindungen des Typs 1 mit (Dialkylamino)-Substituenten als Donor-Gruppen hergestellt worden. Tatsächlich stellt sich beim Wechsel der Donor-Gruppen des (Trimethylstannyl)acetylens (vgl. 10) immer die Frage, ob der neue π -Donor möglicherweise den Pd-Katalysator vergiften und eine effiziente Kupplung verunmöglichen könnte. Diese Möglichkeit ist vor allem bei den S-haltigen Verbindungen 10c und 10d gegeben, während wir bei der Kupplung von 10a und 10b mit 3-Iodoprop-2-enal keine Schwierigkeiten erwarteten. Immerhin ist bereits 1-Ethoxy-2-(trimethylstannyl)acetylen unter Pd-Katalyse erfolgreich mit Iodobenzol gekuppelt worden [39].

Unsere Ergebnisse zeigen, dass sich die (Trimethylstannyl)acetylene **10a** – **d** mit 3-Iodoprop-2-enal (**6**) in Gegenwart katalytischer Mengen von $[Pd(Ph_3P)_4]$ -Katalysator⁶) unter schonenden Bedingungen (0–20°) zu den 'Push-Pull'-Eninen **14** umsetzen lassen (*Schema 4*). Im Gegensatz zur Umsetzung analoger (Trimethylsilyl)acetylene (z.B. von (Trimethylsilyl)-inaminen [14]) ist keine Aktivierung der (Trimethylstannyl)acetylene **10** erforderlich. Zur vollständigen Umsetzung von 3-Iodoprop-2-enal (**6**), das bei der Aufarbeitung stört, wird ein geringer Überschuss an **10** eingesetzt, und das Reaktionsende muss mittels DC kontrolliert werden. Die Zugabe von Et₃N+Cl⁻ dient zur Deaktivierung des bei der Kupplung entstehenden Me₃SnI⁷), und zur Erhöhung der Löslichkeit des Triethylammonium-chlorids bietet sich THF als Lösungsmittel an. Nach Filtration des Reaktionsgemischs und einfacher chromatographischer Aufarbei-

⁶) [Pd(Ph₃P)₄] ist etwas weniger reaktiv als [PdCl₂(Ph₃P)₂], dafür werden weniger Nebenprodukte und Polymere gebildet.

⁷⁾ Me₃SnI ist eine recht starke Lewis-Säure, welche mit dem Produkt 14 reagieren kann. Durch Umsetzung mit Et₄N⁺Cl⁻ erhält man das weniger Lewis-saure Me₃SnCl.

14a X = O, R = Et (60%); 14b X = O, R = Ph (69%); 14c X = S, R = Ph (58%); 14d X = S, R = Me (65%)

tung gewinnt man die tiefgelben Öle der 'Push-Pull'-Enine **14**, welche bei -30° gut haltbar sind⁸), mit Ausbeuten um 60%.

3. NMR-Spektren der 'Push-Pull'-Enine 14a – d.– Die Struktur der isolierten 'Push-Pull'-Enine **14** folgt aus den spektroskopischen Daten. Von besonderem Interesse sind die ¹H- und ¹³C-NMR-Spektren, wobei sich vor allem aus den ¹³C-NMR-Signallagen qualitative Aussagen über die Polarisierung der Enin-C-Atome ableiten lassen.

Die 'Push-Pull'-Enine **14a** – **d** zeichnen sich durch sehr einfache ¹H-NMR-Spektren aus (*Tabelle*). Die Aldehyd- und Vinyl-H-Atome von **14b** – **d** erzeugen ein *AMX*-System bei 9,5 (*d*, H–C(1)), 6,4 (*dd*, H–C(2)) und 6,7 ppm (*d*, H–C(3)), bei **14a** liegen alle drei *Multiplette* gleicher Aufspaltung um *ca.* 0,4 ppm nach hohem Feld verschoben. Wie erwartet hat H–C(2) im Spektrum eine kleinere Verschiebung als H–C(3), doch ist die Signallage-Differenz mit $\Delta \delta = 0,335$ ppm deutlich kleiner als bei (Dialkylamino)-Derivaten ($\Delta \delta = 0,7$ ppm), was auf eine geringere Polarisierung der (C(2)=C(3))-Bindung von **14** hinweist. Die grossen vicinalen Kopplungen von **14a** – **d** von 7,7–8,1 (*J*(1,2)) und 15,5–15,8 Hz (*J*(2,3)) sprechen für eine '*all-trans*'-Anordnung des (O=C(1)-C(2)=C(3)-C(4))-Strukturelements.

Nr.	H-C(1)	H-C(2)	H-C(3)	J(1,2)	J(2,3)	C(1)	C(2)	C(3)	C(4)	C(5)
14a	9,12	5,89	6,33	8,1	15,5	193,0	135,9	134,9	39,9	114,0
14b	9,52	6,40	6,70	8,1	15,8	193,0	137,9	133,2	45,2	106,6
14c	9,55	6,43	6,78	7,7	15,8	192,5	136,8	131,2	94,7 ^a)	96,2 ^a)
14d	9,50	6,31	6,65	7,7	15,8	192,9	136,1	132,1	91,3ª)	$100,8^{a}$)

Tabelle. ¹H- und ¹³C-NMR-Daten der 'Push-Pull'-Enine 14 (300 bzw. 75 MHz, CDCl₃)

^a) Zuordnung unsicher.

In den ¹³C-NMR-Spektren erscheint das C(1)-Signal wie erwartet bei rund 193 ppm. Die beiden O-substituierten 'Push-Pull'-Enine zeichnen sich durch extreme Signallagen-Unterschiede der C-Atome der (C(4) \equiv C(5))-Bindung aus, was zu einem erheblichen Teil auf die Polarisierung der (C \equiv C)-Bindung durch das O-Atom zurückgeht⁹). Dementsprechend ist die (C \equiv C)-Bindung der Schwefel-Derivate **14c**

⁸⁾ Die Verbindungen 14 sind auch bei Raumtemperatur während Stunden und in Lösung während mehrerer Tage stabil.

⁹⁾ Allerdings scheint die extrem kleine Frequenz von C(4) nicht nur durch Ladungsdichte-Effekte bedingt zu sein; denn bei Dialkylamino-Derivaten (14, R₂N statt RX) erscheint das C(4)-Signal bei 68 ppm, obwohl R₂N eine bessere π-Donor-Gruppe ist als z.B. EtO.

und **14d** nur schwach polarisiert, was sich in ähnlichen Resonanz-Lagen von C(4) und C(5) äussert und mit dem nur schwachen π -Donor-Charakter des S-Atoms übereinstimmt. Interessant ist ferner der Vergleich der Signale von C(2) und C(3), welche in allen Fällen sehr ähnlich liegen und nur durch ¹H,¹³C-Verschiebungskorrelationen zugeordnet werden können. Dies deutet auf eine nur geringe Polarisierung der (C=C)-Bindung hin¹⁰) und steht mit dem Befund in Übereinstimmung, dass Ladungsdichte-Effekte durch (C=C)-Bindungen nur relativ schlecht übertragen werden, selbst wenn die (C=C)-Bindung durch π -Donatoren stark polarisiert ist [40]. Vergleicht man schliesslich die Signallagen-Unterschiede von 5-(Dimethylamino)pent-2-en-4-inal (vgl. **14**, mit R₂N statt RX, $\Delta \delta = 8,2$)¹¹), so ändern sich die $\Delta \delta$ -Werte von 8,2¹¹) zu -1,0 (**14a**)¹⁰) und -4,0 ppm (**14d**)¹⁰) etwa gleichsinnig mit der abnehmenden Donor-Wirkung des Substituenten RX.

Die Autoren danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 20-50331.97) für die Unterstützung der Arbeit.

Experimenteller Teil

1. Allgemeines. – 1.1. Charakterisierung der 'Push-Pull'-Enine 14 und der Stannyl-acetylene 10. Die Spektren wurden auf folgenden Geräten aufgenommen: UV: Hewlett-Packard 8452 A. IR: Perkin-Elmer 1600. NMR: Bruker AC-300, AM-400 und AM-500. MS: Varian-MAT-7A und MAT-44S. HR-MS: VG Autospec. Schmp.: Buechi 510 (nicht korrigiert).

1.2. Durchführung der Reaktionen. 'Push-Pull'-Enine 14 und deren Vorstufen 10 sind O_2 und H_2O empfindlich und oft auch thermisch recht instabil. Deshalb wurden alle Reaktionsgefässe vor Gebrauch im N_2 oder Ar-Strom ausgeheizt. Alle Reaktionen werden in abs. Solventien und mit abs. Reagentien in ausgeheizten Dreihals-Kolben mit Inertgas-Überleitung, Tieftemp.-Thermometer, Septum (oder Tropftrichter) und Magnetrührer unter N_2 oder Ar durchgeführt. Zur Kühlung der Reaktionslsg. wurden in der Regel (Trockeneis/i-PrOH)-Kältemischungen verwendet.

1.3. Aufarbeitung empfindlicher Substanzen. 'Push-Pull'-Enine und deren Vorstufen werden unter H₂O und O₂-Ausschluss und meist bei -20° gereinigt. In der Regel werden die Reaktionsgemische zur Abtrennung von anorg. Salzen sowie von polymeren Nebenprodukten zunächst bei -20° über eine doppelwandige Chromatographie-Säule (Kühlung mittels *Kryomat*) chromatographiert, welche die 50-fache Menge Al₂O₃ (meist neutral III) enthielt. Die Säule wurde so gewählt, dass sie nur zur Hälfte mit Alox belegt wurde; damit blieb genügend Raum zur Kühlung der aufgetragenen Lsg. Es wurde mit vorgekühlten Lsgm. nachgespült und das Eluat über einem Vakuum-Vorstoss (mit Inertgas-Anschluss) in einem gekühlten Kolben (-50°) aufgefangen.

2. Synthese der Kupplungspartner 6 und 10. – 2.1. (E)-3-Iodoprop-2-enal (6): [14].

2.2. 1-Ethoxy-2-(trimethylstannyl)ethin (10a) [29]¹²). In einem 250-ml Dreihals-Rundkolben mit Septum, Thermometer, H_2 -Überleitung und Magnetrührer werden 14 ml 1,6M BuLi in Hexan (22,4 mmol = 1,05 molequiv.) in 15 ml Et₂O vorgelegt und auf – 30° gekühlt. Dazu tropft man innerhalb von 10 min unter Rühren eine Lsg. von 40% Ethoxyacetylen (11a) in Hexan (21,3 mmol; *Fluka*), verdünnt mit 10 ml Et₂O. Nach beendeter Zugabe wird das Kühlbad entfernt, die Lsg. während 30 min bei RT. gerührt und bei RT. portionenweise mit 4,25 g (21,3 mmol) Me₃SnCl versetzt. Dieses Gemisch wird noch 2 h bei RT. gerührt, über *Celite* filtriert und i. RV. bei RT./60 Torr eingeengt. Der flüssige Rückstand wird in einer Mikrodest.-Apparatur bei 66–68°/20 Torr destilliert: 4,33 g (87%) klares, farbloses Öl 10a, das bei – 30° beliebig lange haltbar ist. ¹H-NMR (300 MHz,

¹⁰) Man beachte, dass C(3) von **14** durch Ladungsdichte-Effekte der π-Donor-Gruppen nicht beeinflusst wird, dagegen wegen des wirksamen Anisotropie-Effekts der (C≡C)-Bindung auf C(3) um *ca.* 20 ppm nach höherem Feld verschoben ist.

¹¹) C(2): 127,9; C(3): 136,1, $\Delta \delta = 8,2$ ppm [14].

¹²⁾ Modifizierte Vorschrift.

CDCl₃): 4,11 (q, J = 7,2, 2 H); 1,37 (t, J = 7,2, 3 H); 0,24 (m¹³), 9 H). ¹³C-NMR (75 MHz, CDCl₃): 112,1 (s); 74,3 (t); 33,1 (s); 14,1 (q); -7,7 (q)¹⁴).

2.3. *1-Phenoxy-2-(trimethylstannyl)ethin* (**10b**) [42]¹²). Eine Lsg. von 6,3 g (33,3 mmol) (E)-*1,2-Dichloro-1-phenoxyethen* (**13b**) [43] in 8 ml Et₂O wird bei $-20 \pm 3^{\circ}$ zu einer Mischung von 45,83 ml 1,6M BuLi in Hexan (73,3 mmol = 2,2 mol-equiv.) und 25 ml Et₂O getropft. Man entfernt das Kältebad, lässt 60 min bei RT. rühren, versetzt sodann portionenweise mit 33,33 ml 1M Me₃SnCl-Lsg. in THF (33,3 mmol) und rührt weitere 2 h bei RT. Das Gemisch wird über *Celite* filtriert und i. R.V. bei RT./30 Torr eingeengt. Der flüssige Rückstand wird in einer Mikrodest.-Apparatur bei 123°/12 Torr destilliert: 8,15 g (87%) farbloses, klares Öl **10b**, das bei -30° gut haltbar ist. ¹H-NMR (300 MHz, CDCl₃): 7,45–7,1 (mehrere *m*, 5 H); 0,40 (*m*¹³), 9 H). ¹³C-NMR (75 MHz, CDCl₃): 155,9 (*s*); 129,6 (*d*); 124,3 (*d*); 115,0 (*d*); 104,9 (*s*); 41,7 (*s*); -7.4 (*q*)¹⁵).

2.4. 1-(Phenylthio)-2-(trimethylstannyl)ethin (10c). 10,0 g (48,8 mmol) (E)-1,2-dichloro-1-(phenylthio)ethen (13c) [34] in 60 ml Et₂O werden innerhalb von 30 min bei $-20 \pm 3^{\circ}$ zu einer Mischung von 67 ml 1,6M BuLi in Hexan (107,2 mmol = 2,2 mol-equiv.) und 60 ml Et₂O getropft. Man entfernt das Kältebad und rührt 1 h bei RT. Danach wird innerhalb von 5 min portionenweise mit 48,8 ml 1M Me₃SnCl-Lsg. in THF (48,8 mmol) versetzt und 4,5 h bei RT. weitergerührt. Das Gemisch wird über *Celite* filtriert und i. RV. bei RT./30 Torr eingeengt. Destillation des öligen Rückstandes in einer Mikrodest.-Apparatur bei 105°/0,3 mbar ergibt 11,64 g (80%) farbloses, klares Öl 10c, das bei -30° haltbar ist. ¹H-NMR (300 MHz,CDCl₃): 7,55 – 7,2 (mehrere *m*, 5 H); 0,43 (*m*¹³), 9 H). ¹³C-NMR (75 MHz, CDCl₃): 132,9 (*s*); 129,0 (*d*); 126,2 (*d*); 125,9 (*d*); 105,9 (*s*); 91,9 (*s*); -7,6 (*q*)¹⁵).

2.5. 1-(*Methylthio*)-2-(*trimethylstannyl*)ethin (**10d**). 8,04 g (56,2 mmol) (E/Z)-1,2-Dichloro-1-(*methyl-thio*)ethen (**13d**) [36] in 70 ml Et₂O werden innerhalb von 30 min bei $-20 \pm 3^{\circ}$ zu einer Mischung von 77,5 ml 1,6M BuLi in Hexan (124 mmol = 2,2 mol-equiv.) und 70 ml Et₂O getropft. Man entfernt das Kältebad und rührt 1 h bei RT. Danach werden innerhalb von 5 min bei RT. 56,2 ml 1M Me₃SnCl-Lsg. in THF (56,2 mmol) zugetropft, worauf man weitere 5 h bei RT. rühren lässt. Das Gemisch wird über *Celite* filtriert und i. RV. bei RT./30 Torr eingeengt. Der flüssige Rückstand wird in einer Mikrodest.-Apparatur bei 81°/12 Torr destilliert: 12,33 g (93%) farbloses, klares Öl, das bei -30° haltbar ist. ¹H-NMR (300 MHz, CDCl₃): 2,30 (*s*, 3 H); 0,20 (*m*¹³), 9 H). ¹³C-NMR (75 MHz, CDCl₃): 98,2 (*s*); 98,1 (*s*); 19,5 (*q*); -7.6 (*q*)¹⁵).

3. Synthese der 'Push-Pull'-Enine 14. – 3.1. (E)-5-Ethoxypent-2-en-4-inal (14a). In einem ausgeheizten 50ml Dreihals-Rundkolben mit Septum, N₂-Überleitung, Tieftemp.-Thermometer und Magnetrührer werden unter N₂ 994 mg (6 mmol) Et₄N⁺Cl⁻ in 30 ml abs. THF vorgelegt und während 5 min bei RT. gerührt. Sodann werden in Intervallen von je 5 min 1,025 g (4,4 mmol = 1,1 mol-equiv.) **10a**, 141 mg (0,12 mmol) [Pd(Ph₃P)₄]-Katalysator und 3,3 ml 1,21M Lsg. von 3-Iodoprop-2-enal (6) in abs. THF (4,0 mmol) zugegeben. Das Gemisch wird 2,2 h bei RT. gerührt, mit 30 ml Hexan vesetzt und nach 5 min Rühren bei -20° über Alox (neutral III) filtriert und mit 80 ml Et₂O/Hexan 1:1 eluiert. Das Filtrat wird im Tieftemp.-RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt und der Rückstand (0,62 g) mit Hexan/Et₂O 4:1 über Alox (neutral III) chromatographiert. Die Hauptfraktion¹⁶) (R_t (0,36)¹⁷) wird im Tieftemp.-RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt: 0,30 mg (60%) dunkelgelbes Öl **14a**. UV/VIS (MeCN): 282 (20390), Ausläufer bis 340 nm. IR (CCl₄)¹⁸): 2952w, 2922m, 2850w, 2240s, 1675s, 1608m-s, 1306m-s, 1132s, 996m-s, 956m, 906m. ¹H-NMR (300 MHz, CDCl₃): 9,12 (d, J = 8,1, 1 H); 6,33 (d, J = 15,5, 1 H); 5,89 (dd, J = 15,5, 8,1, 1 H); 3,94 (q, J = 7,2, 2 H); 1,08 (t, J = 7,2, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 193,0 (d); 135,9 (d); 134,9 (d); 114,0 (s); 76,2 (t); 39,9 (s); 13,9 (q). MS¹⁸): 124 (23, M^{++}), 96 (15), 95 (100), 68 (44), 67 (16), 53 (10), 40 (14), 39 (45), 38 (14), 29 (49). HR-MS: 124,0525 (C₇H₈O₂; ber.: 124,0524)¹⁴).

3.2. (E)-5-Phenoxypent-2-en-4-inal (14b). In einem ausgeheizten 100-ml Dreihals-Rundkolben mit Septum, N_2 -Überleitung, Tieftermp.-Thermometer und Magnetrührer werden unter N_2 0,236 g (1,425 mmol) Et₃N+Cl⁻ in 15 ml abs. THF vorgelegt und während 5 min bei RT. gerührt. 283 mg (1 mmol = 1,05 mol-equiv.) **10b** werden dazugegeben, das Gemisch wird auf 0° gekühlt und nacheinander in Intervallen von 5 min mit 56 mg (5 mol-%) [Pd(Ph₃P)₄]-Katalysator sowie 1,32 ml 0,72M Lsg. von 3-Iodoprop-2-enal in abs. THF (0,95 mmol) versetzt. Man rührt weitere 5 min bei 0°, dann 1 h bei RT., versetzt mit 15 ml Hexan, rührt weitere

¹³⁾ Aufspaltung des Me-Signals durch NMR-aktive Sn-Isotope.

¹⁴) Weitere spektroskopische Daten und Abbildungen der Spektren, vgl. [41].

¹⁵) Weitere spektroskopische Daten und Abbildungen der Spektren, vgl. [2].

¹⁶) Mischfraktionen werden verworfen, sie enthalten ca. 10% an **14a**-**d**.

¹⁷) Auf Alox-DC-Platten, Laufmittel Hexan/Et₂O 4:1, Kontrolle im UV bei 254 nm.

¹⁸) Nur wichtigste IR-Banden und MS-Fragmente.

5 min, filtriert bei -20° über Alox (neutral IV) und eluiert mit Et₂O/Hexan 1:1. Das Filtrat wird im Tieftemp. RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt und der Rückstand mit Hexan/Et₂O 4:1 bei -20° über Alox (neutral IV) chromatographiert. Die Hauptfraktion¹⁶) (R_t 0,45)¹⁷) wird im Tieftemp.-RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt: 113 mg (69%) gelbes Öl **14b**. UV/VIS (MeCN): 290 (21460), Ausläufer bis 400 nm. IR (Film)¹⁸): 3059w, 2821w, 2251s, 1681s, 1587m, 1487m-s, 1309m, 1123m-s, 892m, 751m, 685w-m. ¹H-NMR (300 MHz, CDCl₃): 9,52 (d, J = 8,1, 1 H); 7,4-7,1 (m, 5 H); 6,70 (d, J = 15,8, 1 H); 6,40 (dd, J = 15,8, 8,1, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 193,0 (d); 155,4 (s); 137,9 (d); 133,2 (d); 130,0 (d); 125,4 (d); 115,0 (d); 106,6 (d); 45,2 (s). MS¹⁸): 172 (100, M^{++}), 171 (41), 144 (26), 116 (46), 115 (53), 105 (71), 95 (89), 86 (13), 84 (19), 77 (71), 51 (39), 39 (19). HR-MS: 172,0528 (C₁₁H₈O₂; ber.: 172,0524)¹⁵).

3.3. (E)-5-(Phenylthio)pent-2-en-4-inal (14c). In einem ausgeheizten 100-ml Dreihals-Rundkolben mit Septum, N₂-Überleitung, Tieftemp.-Thermometer und Magnetrührer werden unter N₂ 0.332 g (2 mmol = 2 molequiv.) $Et_4N^+Cl^-$ in 25 ml abs. THF vorgelegt und 5 min bei RT. gerührt. Dazu werden 0,42 g (1,4 mmol = 1,4 mol-equiv.)¹⁹) **10c** getropft, das Gemisch wird auf 0° gekühlt und in Intervallen von je 5 min mit 55 mg (4,7 mol-%) [Pd(Ph₃P)₄]-Katalysator sowie 0,84 ml 1,195M Lsg. von 3-Iodoprop-2-enal in abs. THF (1 mmol) versetzt. Das Gemisch wird weitere 5 min bei 0°, sodann 14 h bei RT. gerührt 19), mit 25 ml Hexan versetzt und, nach 5 min Rühren, bei - 20° über Al₂O₃ (neutral III) filtriert und mit 100 ml Et₂O/Hexan 1:1 eluiert. Das Filtrat wird im Tieftemp.-RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt und der Rückstand mit Hexan/Et₂O 4:1 bei -20° über Alox (neutral III) chromatographiert. Die Hauptfraktion¹⁶) ($R_{\rm f}$ 0,41)¹⁷) wird im Tieftemp.-RV. bei $-20^{\circ/2}$ 10⁻³ Torr eingeengt: 110 mg (58%) dunkelgelbes Öl 14c. UV/VIS (MeCN): 242 (9940), 260 (sh, 8400), 332 (9350), Ausläufer bis ca. 430 nm. IR (Film)¹⁸): 3060w, 2816w, 2725w, 2130m-s, 1679s, 1595m, 1478w-m, 1442*w*-*m*, 1124*m*-*s*, 951*w*-*m*, 738*m*, 687*w*-*m*. ¹H-NMR (300 MHz, CDCl₃): 9,55 (*d*, *J* = 7,7, 1 H); 7,5-7,2 (m, 5 H); 6,78 (d, J = 15,8, 1 H); 6,43 (dd, J = 15,8, 7,7, 1 H).¹³C-NMR (75 MHz, CDCl₃): 192,5 (d); 136,8 (d); $131,2 (d); 131,1 (s); 129,6 (d); 127,6 (d); 126,9 (d); 96,2 (s); 94,7 (s). MS^{18}: 189 (12), 188 (54, M^{++}), 187 (100),$ 160 (11), 155 (12), 115 (27), 111 (52), 83 (17), 77 (10), 51 (16), 39 (12). HR-MS: 188,0277 (C₁₁H₈OS; ber.: 188,0296)15).

3.4. (E)-5-(*Methylthio*)*pent-2-en-4-inal* (**14d**). In einem ausgeheizten 100-ml Dreihals-Rundkolben mit Septum, N₂-Überleitung, Tieftemp.-Thermometer und Magnetrührer werden unter N₂ 332 mg (2 mmol) Et₄N⁺Cl⁻ in 25 ml abs. THF vorgelegt, während 5 min bei RT. gerührt und mit 334 mg (1,4 mmol = 1,4 molequiv.) **10d** versetzt. Das Gemisch wird auf 0° gekühlt und in Intervallen von je 5 min mit 55 mg (4,7 mol-%) [Pd(Ph₃P)₄]-Katalysator sowie 0,84 ml 1,195M Lsg. von 3-Iodoprop-2-enal (1 mmol) in THF versetzt. Man rührt das Reaktionsgemisch weitere 15 min bei 0°, dann 2 h bei RT., versetzt mit 25 ml Hexan, rührt weitere 5 min bei RT., filtriert bei -20° über Alox (neutral III) und eluiert mit 100 ml Et₂O/Hexan 1:1. Das Filtrat wird im Tieftemp.-RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt und der Rückstand mit Hexan/Et₂O 4 :1 über Alox (neutral III) chromatographiert. Die Hauptfraktion¹⁶) (R_f 0,37)¹⁷) wird im Tieftemp.-RV. bei $-20^{\circ}/10^{-3}$ Torr eingeengt: 80 mg (65%) dunkelgelbes Öl **14d**. UV/VIS (MeCN): 242 (6480), 260 (6160), 320 (12670), Ausläufer bis *ca*. 430 nm. IR (Film)¹⁸): 2930w, 2821w, 2728w, 2128s, 1674s, 1595s, 1126s, 952m. ¹H-NMR (300 MHz, CDCl₃): 9,50 (d, J = 7,7, 1 H); 6,65 (d, J = 15,8, 1 H); 6,31 (dd, J = 15,8, 7,7, 1 H); 2,49 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 192,9 (d); 136,1 (d); 132,1 (d); 100,8 (s); 91,3 (s); 19,6 (q). MS¹⁸): 127 (9), 126 (57, M^{++}), 112 (10), 111 (100), 96 (11), 95 (13), 83 (27), 82 (24), 81 (11), 39 (25). HR-MS: 126,009 (C₆H₆OS; ber.: 126,014)¹⁵).

LITERATURVERZEICHNIS

- [1] F. Wilhelm, M. Neuenschwander, Helv. Chim. Acta 1999, 83, 338.
- [2] C. Bacilieri, Dissertation, Universität Bern, 1999.
- [3] R. Mestres, J. Chem. Soc., Perkins Trans. 1972, 1, 805.
- [4] U. Stämpfli, M. Neuenschwander, Helv. Chim. Acta 1983, 66, 1427.
- [5] G. Himbert, W. Brunn, Liebigs Ann. Chem. 1985, 2206.
- [6] Y. Sato, Y. Kobayashi, M. Sugiura, H. Shirai, J. Org. Chem. 1978, 43, 199.
- [7] K. Hafner, M. Neuenschwander, Angew. Chem. 1968, 80, 443; Angew. Chem., Int. Ed. 1968, 7, 459.
- [8] H.-J. Gais, K. Hafner, M. Neuenschwander, Helv. Chim. Acta 1969, 52, 2641.
- [9] I. G. Ostroumov, E. Y. Khakunova, A. E. Tsil'ko, I. A. Maretina, A. A. Petrov, Zh. Org. Khim. 1990, 26, 2508; J. Org. Chem. USSR (Engl. Transl.) 1990, 26, 2172.
- [10] A. Bartlome, Dissertation, Universität Bern, 1991.

¹⁹) Die Kupplung verläuft deutlich langsamer als diejenige von **10a** oder **10b**.

- [11] B. A. Patel, J. I. Kim, D. B. Bender, L. C. Kao, R. F. Heck, J. Org. Chem. 1981, 46, 1061; J. I. Kim, B. A. Patel, R. F. Heck, J. Org. Chem. 1981, 46, 1067.
- [12] R. F. Heck, Org. React. 1982, 27, 345.
- [13] A. Bartlome, U. Stämpfli, M. Neuenschwander, Chimia 1991, 45, 346.
- [14] D. Berger, A. Bartlome, M. Neuenschwander, Helv. Chim. Acta 1996, 79, 179.
- [15] H. G. Viehe, 'The Chemistry of Acetylenes', Marcel Dekker, New York, 1969.
- [16] W. Steglich, G. Höfle, W. König, F. Weygand, Chem. Ber. 1968, 101, 308; J. Ficini, Tetrahedron 1976, 32, 1449.
- [17] M. Neuenschwander, K. Hafner, Angew. Chem. 1968, 80, 444; Angew. Chem., Int. Ed. 1968, 7, 460.
- [18] M. Neuenschwander, U. Stämpfli, Chimia 1979, 33, 439.
- [19] F. Fischer, D. Berger, M. Neuenschwander, Angew. Chem. 1998, 110, 2214; Angew. Chem., Int. Ed. 1998, 37, 2138.
- [20] F. Fischer, M. Neuenschwander, *Helv. Chim. Acta* 1998, 81, 2282; F. Fischer, Dissertation, Universität Bern, 1998.
- [21] A. Roedig, G. Märkl, S. Schödel, Angew. Chem. 1957, 69, 240; Liebigs Ann. Chem. 1962, 659, 1.
- [22] A. Roedig, G. Märkl, F. Frank, R. Kohlhaupt, M. Schlosser, Chem. Ber. 1967, 100, 2730.
- [23] M. Alami, G. Linstrumelle, Tetrahedron Lett. 1991, 32, 6109.
- [24] F. Wudl, S. P. Bitter, J. Am. Chem. Soc. 1986, 108, 4685.
- [25] E. Negishi, N. Okukado, S. F. Lavich, F. T. Lou, J. Org. Chem. 1984, 49, 2629.
- [26] Y. Hatanaka, T. Hiyama, J. Org. Chem. 1988, 53, 918.
- [27] Y. Hatanaka, T. Hiyama, Synlett 1991, 845.
- [28] K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374.
- [29] G. Himbert, L. Henn, Liebigs Ann. Chem. 1987, 771.
- [30] P. Müller, N. Pautex, Helv. Chim. Acta 1991, 74, 55.
- [31] S. V. Ponomarev, M. B. Erman, S. A. Lebedev, S. Y. Pechurina, I. F. Lutsenko, Zh. Obshch. Khim. 1971, 41, 121.
- [32] S. V. Ponomarev, S. Y. Pechurina, I. F. Lutsenko, Zh. Obshch. Khim. 1969, 39, 1171.
- [33] L. Henn, Dissertation, Universität Kaiserslauten, 1982.
- [34] F. Montanari, A. Negrini, Gazz. Chim. Ital. 1957, 87, 1061; W. E. Truce, R. Kassinger, J. Am. Chem. Soc. 1958, 80, 1916.
- [35] S. Y. Delavarenne, H. G. Viehe, Tetrahedron Lett. 1969, 54, 4761.
- [36] M. Beit-Yannai, Z. Rappoport, B. A. Shainyan, Y. S. Danilevich, J. Org. Chem. 1997, 62, 8049.
- [37] I. P. Beletskaya, J. Organomet. Chem. 1983, 250, 551.
- [38] J. K. Stille, Angew. Chem. 1986, 98, 504.
- [39] T. Sakamoto, A. Yasuhara, Y. Kondo, H. Yamanaka, Synlett 1992, 502.
- [40] M. Neuenschwander, A. Bartlome, Helv. Chim. Acta 1991, 74, 1489.
- [41] C. Bacilieri, Diplomarbeit, Bern, 1995.
- [42] G. Himbert, in 'Houben-Weyl, Methoden der organischen Chemie', Erweiterungs- und Folgebände zur 4. Auflage, Band E 15: En-X, In-X-Verbindungen, Teil 3, 1993, 3186.
- [43] J. Normant, Bull. Soc. Chim. Fr. 1963, 36, 1876.

Eingegangen am 20. Dezember 1999